

5115

Вычисляющий преобразователь сигналов

Nº 5115L104-RU (1038) от серийного № 000395001

SIGNALS THE BEST

RU ▶ PR Electronics предлагает обширную программу аналоговых и дискретных модулей обработки сигналов для целей промышленной автоматизации. Производственная программа включает барьеры искробезопасности, дисплеи-индикаторы, датчики температуры, универсальные преобразователи и т.д. На наши модули можно положиться в самых тяжелых условиях работы, – с высоким уровнем вибраций и электромагнитных помех и с большими колебаниями температуры. Все наши изделия соответствуют самым жестким международным стандартам. Наш девиз "Signals the Best" отражает эту философию – и служит вашей гарантией качества.

ВЫЧИСЛЯЮЩИЙ ПРЕОБРАЗОВАТЕЛЬ СИГНАЛОВ

PRetrans 5115

Содержание

Предупреждающие символы	2
Инструкция по безопасности	3
Декларация соответствия ЕС	5
Разборка устройств семейства 5000	6
Области применения	7
Техническая характеристика	7
Монтаж / установка	7
Схемы применения	8
Расшифровка кода заказа	9
Электрические данные	9
Схемы присоединения	14
Принципиальная схема	17
Выбор типов входа (программирование перемычек)	18
Подсоединение модуля 5115 к Loop Link	
(Конфигурирование посредством ПК)	18
Описание функциональных возможностей	19

вообще

ВНИМАНИЕ

Данный модуль рассчитан на работу под опасными для жизни уровнями напряжения. Пренебрежение данным предостережением может повлечь за собой серьезные травмы персонала и повреждения оборудования.

Чтобы не допустить поражения электрическим током и возникновения пожара, следует соблюдать приведенные в Руководстве меры предосторожности и указания. Эксплуатация модуля должна производиться строго в соответствии с описанием.

Тщательно изучите Руководство до ввода модуля в эксплуатацию. Установку модуля разрешается производить только квалифицированному техперсоналу. При несоблюдении условий эксплуатании модуль не обеспечивает требуемого уровня безопасности.

ОПАСНО ДЛЯ ЖИЗНИ

ВНИМАНИЕ

Нельзя подавать опасное для жизни напряжение на модуль до завершения монтажа. Следующие операции подлежат выполнению только на обесточенном модуле и с соблюдением мер антистатической защиты:

Разборка модуля с целью (пере)настройки переключателей и перемычек.

Монтаж модуля, подсоединение кабелей и их отсоединение. Диагностика сбоев.

диагностика сооев.

Ремонт модуля и замена предохранителей может производиться только изготовителем, PR electronics A/S.

жатном

ВНИМАНИЕ

Устройства семейства 5000 устанавливают на монтажную рейку стандарта DIN 46277. Коммуникационный разъем устройств семейства 5000 соединен с входными клеммами, на которых может присутствовать опасное напряжение, поэтому подсоединение программирующего устройства Loop Link разрешается только посредством штатного кабеля.

ПРЕДУПРЕЖДАЮЩИЕ СИМВОЛЫ:

Треугольник с восклицательным знаком: Предостережение / требование. Действия, могушие повлечь опасность для жизни.

Символ двойной изоляции обозначает, что модуль выполняет дополнительные требования к изоляции.

Ех-модуль одобрен в соответствии с директивой АТЕХ для приме-нений с устройствами, работающими во взрывоопасных зонах.

ИНСТРУКЦИЯ ПО БЕЗОПАСНОСТИ

ОПРЕДЕЛЕНИЯ:

Опасные для жизни уровни напряжения понимаются как находящиеся в диапазоне 75...1500 V постоянного тока и 50...1000 V переменного тока.

Техперсонал - это квалифицированный персонал, обученный и подготовленный осуществлять монтаж, эксплуатацию или диагностику сбоев с учетом необходимых технических требований и норм безопасности.

Операторы - персонал, который в условиях нормальной эксплуатации должен производить настройку модулей с помощью кнопок или потенциометров устройства, и который ознакомлен с содержанием настоящего Руководства.

ПРИЕМКА И РАСПАКОВКА:

Избегайте повреждения модуля при распаковке. Убедитесь, что тип модуля соответствует заказанному. Упаковка, в которой устройство было поставлено, должна сопровождать модуль до места/момента его окончательной установки.

УСЛОВИЯ ЭКСПЛУАТАЦИИ:

Не подвергайте устройство воздействию прямого солнечного света, сильной запыленности или тепла, вибрации и механическим воздействиям, дождю или повышенной влажности. При необходимости предупреждайте перегрев устройства (см. диапазон рабочих температур) посредством вентиляции. Все модули относятся к монтажному классу II, классу загрязнения среды 1, классу

изоляции II.

МОНТАЖ / УСТАНОВКА:

Подсоединение модуля разрешено только техперсоналу, ознакомленному с терминологией, требованиями безопасности и инструкциями Руководства, и следующему им.

При сомнениях относительно правильного обращения с устройством обращайтесь к региональному представителю или непосредственно к:

PR electronics A/S, Lerbakken 10, 8410 Rønde, Danmark тел.: +45 86 37 26 77.

Монтаж и подсоединение модуля должны производиться в соответствии с действующими требованиями к электромонтажу, в т.ч. в отношении поперечного сечения провода, предохранителей и размещения устройства.

Описание входа / выхода и подсоединения к источнику питания имеется на принципиальной схеме и табличке на устройстве.

Для модулей, постоянно находящихся под опасным для жизни напряжением: Максимальный ток предохранителя должен составлять 10 А. Предохранитель должны находиться в легкодоступном месте вблизи модуля. Выключатель должен быть снабжен четкой и ясной информацией о своем назначении (т.е., о том, что он отключает

Год изготовления устройства устанавливается из 2-х начальных цифр его серийного номера.

КАЛИБРОВКА И РЕГУЛИРОВКА:

питание модуля).

При калибровке и регулировке модуля измерение и подключение внешних источников напряжения питания должно производиться в соответствии с указаниями настоящего Руководства, техперсонал обязан применять инструмент и оборудование, обеспечивающие безопасность.

ОБСЛУЖИВАНИЕ ПРИ НОРМАЛЬНЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ:

Настройка и эксплуатация модулей может производиться только по завершении их установки с учетом требований безопасности на распределительных щитах и т.п., так, чтобы эксплуатация устройства не представляла собой опасности для жизни или риска материального ущерба. Это подразумевает, что притрагиваться к модулю безопасно, а сам модуль размещен в удобном для обслуживания, доступном месте.

чистка:

Чистка модуля производится в обесточенном состоянии ветошью, слегка смоченной дистилированной водой.

ОТВЕТСТВЕННОСТЬ:

В случае несоблюдения инструкций Руководства в точности, заказчик не может предъявлять претензий к PR electronics A/S, на которые он иначе имел бы право в соответствии с заключенным контрактом.

ДЕКЛАРАЦИЯ СООТВЕТСТВИЯ ЕС

Изготовитель

PR electronics A/S Lerbakken 10 DK-8410 Rønde

настоящим заявляет,что изделие:

Тип: 5115

Наименование: Вычисляющий преобразователь

сигналов

отвечает требованиям следующих директив и стандартов:

Директивы по ЭМС 2004/108/ЕС и последующих к ней дополнений

EN 61326-: 2006

Точную информацию о приемлемом уровне ЭМС см. в электрических данных модуля.

Директиве по низкому напряжению 2006/95/ЕС с последующими дополнениями

EN 61010-1:2001

Директиве ATEX 94/9/EC с последующими дополнениями

EN 50014: 1997 Е включая А1+А2, EN 50020: 2002 и

EN 50281-1-1: 1998 включая А1

Сертификат АТЕХ: DEMKO 00ATEX128567 (5115В)

Не требует изменений для приведения в соответствие с новыми требованиями

EN 60079-0 : 2006 и EN 60079-11 : 2007

EN 61241-1: 2006 n EN 61241-11: 2007

Уполномоченный орган:

UL International Demko A/S (0539)

Lyskaer 8 P.O. Box 514

2730 Herlev

Denmark

Rønde, 23 сентября 2010 г.

Kim Rasmussen

Подпись изготовителя

РАЗБОРКА УСТРОЙСТВ СЕМЕЙСТВА 5000

Вначале демонтируйте подсоединительные клеммы опасного напряжения.

Илл. 1:

Отсоедините модуль от рейки DIN, поднимая за нижний замок.

Илл. 2:

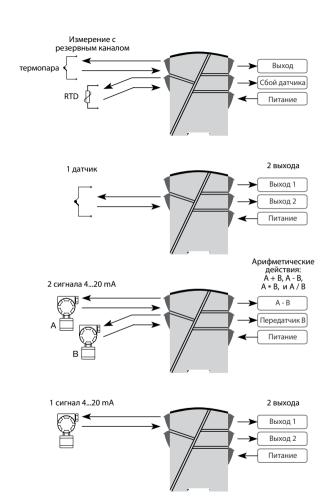
Выньте печатную плату: поднимая за верхний замок, одновременно тяните на себя переднюю панель.

Теперь можно переустановить переключатели и перемычки.

Вычисляющий преобразователь сигналов PRetrans 5115

- Измерение с резервным каналом 2 входа сигналов
- Счетчик сигналов с 4-мя вычислительными функциями
- Дублирование сигнала
- Вход RTD, Ohm, термопары, mV, mA u V
- Универсальное питание AC или DC

Области применения:


- Дублированное измерение температуры посредством 2 сенсоров, так что при сбое основного датчика измерение производится вспомогательным датчиком.
- Дублирование входного сигнала, напр., от датчика температуры или аналогового сигнала процесса, на 2 отдельных аналоговых входа.
- Счетчик сигналов с 4 вычислительными функциями: суммирование, вычитание, умножение и деление.
- Пример: Измерение разности температур: (Вход 1 * K1) (Вход 2 * K2) + K4
- Пример: Измерение среднего значения: (Bx. 1 * 0,5) + (Bx. 2 * 0,5) + K4
- Пример: Различные функции на выходах:
 Выход 1 = вход 1 вход 2, тогда как Выход 2 = вход 1 + вход 2.

Техническая характеристика:

- При помощи конфигурационного ПО PReset можно запрограммировать PR5115 под нужды конкретного применения в течение нескольких секунд.
- Индикация светодиодом нормальной эксплуатации и сбоя сенсора или функции.
- Архивированные данные регулярно подвергаются контролю на сохранность.
- 5 портов, гальваническая развязка 3,75 kV~.

Монтаж / установка:

 В вертикальном или горизонтальном положении на рейке DIN. Модули монтируются впритык, что позволяет установить 42 канала/м.

Расшифровка кода заказа: 5115 _—

Тип	Исполнение		е Вход	
5115	Стандарт : А		RTD / термопара / mV / R / mA / \	/ :_
	ATEX Ex : B		RTD / термопара / mV / R mA /V / mV Вход1, RTD / термопара / mV / R Вход 2, mA / V / mV	:1 :2 :3

^{*}ВНИМАНИЕ! В применениях с входами термопар заказывайте разъем с компенсацией холодного спаятипа 5910/5910 EEx (Вход 1) и 5913/5913 EEx (Вход 2).

Электрические данные:

Диапазон рабочих температур среды:

-20°С до +60°С

Общие данные:

Напряжение питания, универсальное	21,6253 V~
	5060 Hz
	19,2300 V =
Потребляемая мощность	\leq 2 W
Макс. потребляемая мощность	≤ 3 W
Предохранитель	400 mA T / 250 VAC
Изоляция, напряжение тестовое / рабочее	3,75 kV~ / 250 V~
Интерфейс обмена данными	Loop Link
Отношение сигнал / шум	Мин. 60 dB (0100 kHz)
Время актуализации:	
Вход температуры	115 мс
Вход mA- / V- / mV	75 мс
Время реакции (090%, 10010%), программ	иируемое:
Вход температуры	400 мс до 60 сек.
Вход mA- / V- / mV	250 мс til 60 сек.
Время резервного переключения	≤ 400 MC
Динамический диапазон сигнала, вход	22 bit
Динамический диапазон сигнала, выход	16 bit
Температура калибровки	2028°C

Точность, большее из общих и базовых значений:

Общие значения					
Тип входа	Абс. погрешность	Зависимость- от температуры			
Bce	≤±0,05% от диап.	≤ ±0,01% от диап. / °C			

Базовые значения				
Тип входа	Основная погрешность	Зависимость- от температуры		
mA	≤ ±4 µA	≤ ±0,4 μA/°C		
Напряжение	$\leq \pm 10~\mu V$	≤ ±1 μV/°C		
RTD	≤ ±0,2°C	≤ ±0,01°C/°C		
Лин. R	≤ ±0,1 Ω	≤ ±10 mΩ/°C		
Тип термопары:				
E, J, K, L, N, T, U	≤±1°C	≤ ±0,05°C/°C		
Тип термопары: B, R, S, W3, W5, LR	≤±2°C	≤ ±0,2°C/°C		

Вспомогательное напряжение:

Опорное напряжение	2,5 VDC ±0,5% / 15 mA
2-проводное питание	
(клеммы 4442 и 5452)	
Макс. сечение проводника	1 x 2,5 мм ² многожильный
Момент затяжки винта клеммы	0,5 Nm
Отн. влажность воздуха	< 95% (без конденсата)
Размеры (ВхШхГ)	109 х 23,5 х 130 мм
Тип рейки DIN	DIN 46277
Класс защиты	IP20
Bec	225 г

Электрические данные, вход температуры:

Макс. смещение нуля 50% от выбранного макс. значения

Вход термопары:

Тип	Мин. температура	Макс. температура	Мин. диап.	Норма
В	+400°C	+1820°C	200°C	IEC584
E	-100°C	+1000°C	50°C	IEC584
J	-100°C	+1200°C	50°C	IEC584
K	-180°C	+1372°C	50°C	IEC584
L	-100°C	+900°C	50°C	DIN 43710
N	-180°C	+1300°C	100°C	IEC584
R	-50°C	+1760°C	200°C	IEC584
S	-50°C	+1760°C	200°C	IEC584
Т	-200°C	+400°C	50°C	IEC584
U	-200°C	+600°C	75°C	DIN 43710
W3	0°C	+2300°C	200°C	ASTM E988-90
W5	0°C	+2300°C	200°C	ASTM E988-90
LR	-200°C	+800°C	50°C	GOST 3044-84

Ток сбоя датчика...... Номин. 30 µА

Компенсация холодного спая СЈС...... < ±1°C

Обнаружение сбоя датчика..... да

Вход mV:

Диапазон измерения.....-150 mV

Мин. диапазон измерения 5 mV

Макс. смещение нуля (коррекция)...... 50% от выбранного макс. значения

Входное сопротивление Номин. 10 М Ω

Вход RTD и линейного сопротивления:

Тип	Мин. знач.	Макс. знач.	Мин. диап.	Норма
Pt100	-200°C	+850°C	25°C	IEC 751
Ni100	-60°C	+250°C	25°C	DIN 43760
Лин.R	0Ω	5000Ω	30 Ω	

Сопротивление кабеля на жилу (макс.) 10 Ω

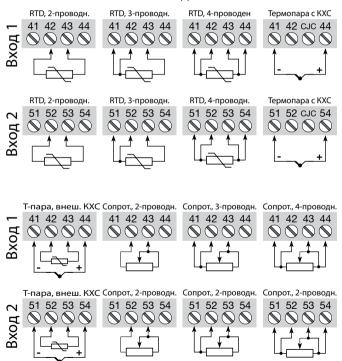
Ток датчика...... Номин. 0,2 mA Влияние сопротивления кабеля датчика

(3-/4-жильного)...... $< 0,002 \Omega / \Omega$

Обнаружение сбоя датчика..... да

Электрические данные, вход mA- / V- / m	V:
Макс. смещение нуля (коррекция)	50% от выбранного макс. значения
Токовый вход:	
Диапазон измерения	0100 mA
Мин. диапазон измерения (шкала)	4 mA
Входное сопротивление:	
с подключенным напряжением	Номин. 10 Ω + PTC 10 Ω
без напряжения питания	Rшунт= ∞, Vпад. < 6 V
Вход напряжения:	
Диапазон измерения	0250 VDC
Мин. диапазон измерения (шкала)	
Макс. смещение нуля (коррекция))	50% от выбр. макс.значения
Входное сопротивление ≤ 2,5 VDC	Номин. 10 ΜΩ
> 2,5 VDC	номин. 5 ΜΩ
Электрические данные - ВЫХОД:	
Токовый выход:	
Диапазон (шкала)	
Мин. диапазон сигнала (шкала)	
Макс. смещение нуля (коррекция)	
Нагрузка (макс.)	
Стабильность нагрузки	
Ограничение тока	≤ 28 mA
Выход напряжения:	
Диапазон сигнала (шкала)	
Мин. диапазон сигнала (шкала)	
Нагрузка (мин.)	500 kΩ
2-проводный выход 420 mA:	
Диапазон сигнала	
Стабильность нагрузки	
Сопротивление нагрузки	
Макс. внеш. 2-провод. питание	29 VDC
Реакция на изменение внешнего	
2-проводного напряжения питания	< 0,005% от диап. / V
Обнаружение сбоя датчика:	
Программируемое	
NAMUR NE43 BBepx	
NAMUR NE43 Вниз	3,5 mA

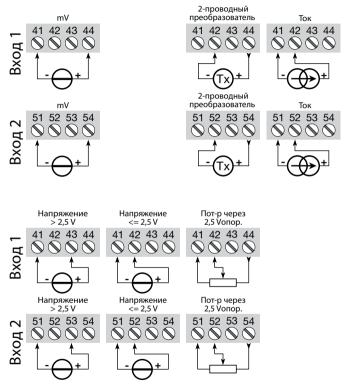
От диап.= от актуально выбранного диапазона


Сертификация по EEx / I.S. (5115B):	
DEMKO 00ATEX128567	(E) II (1) GD
DEIVING CONTEXT20307	[EEx ia] IIC
Применение в зоне	
Данные для исполнения Ex / I.S , все типі	ы эттэв:
Клеммы 31, 32 и 33 Um	· 250 V

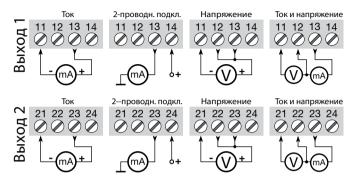
Данные для исполнения Ex / I.S, тип 5115	ь В1 (вход 1 для 5115 ВЗ):
Клеммы 41, 42, 44 к 43 (51, 52, 54 к 53)	. 7 F VDC
U _O I _O	
P _O	·
· ·	•
L ₀	
C ₀	•
Данные для исполнения Ex / I.S, тип 5115	5 В2 (вход 2 для 5115 В3):
Клемма 44 к 41 (54 к 51)	
U ₀	
l ₀	
P ₀	·
L ₀	• •
C ₀	: 0,08 μF
Клеммы 42, 43 к 41 (52, 53 к 51)	
U ₀	•
l ₀	
P ₀	•
L ₀	
C ₀	: 6,0 μF
Одобрение для применения на судах и г	ілатформах:
Det Norske Veritas, Правила для судов	Стандарт сертиф. №. 2.4
Сертификат соответствия ГОСТ Р:	
ВНИИМ и ВНИИФТРИ, № серт	См. www.prelectronics.com
Выполняет директивные требования:	Стандарт:
EMC 2004/108/EC	EN 61326-1
LVD 2006/95/EC	
PELV/SELV	IEC 364-4-41 и EN 60742

ATEX 94/9/EC EN 50014, EN 50020 и EN 50281-1-1

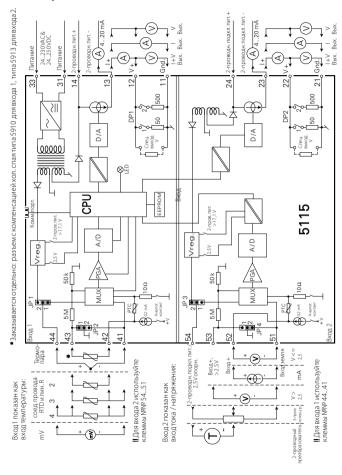
Схемы присоединения:



Входы:

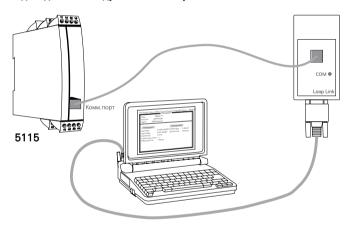

Схемы присоединения:

Входы:



Схемы присоединения:

Выходы:


ПРИНЦИПИАЛЬНАЯ СХЕМА:

Выбор типов входа: (5115А)

Вход	JP 1	JP 2	JP 3	JP 4
Температура, вход 1 Температура, вход 2	1 -	1 -	- 1	- 1
Ток / напряжение, вход 1 Ток / напряжение, вход 2	2 -	2	- 2	- 2

Подсоединение модуля 5115 к Loop Link:

Описание функциональных возможностей

Общие характеристики:

Вход 1 и вход 2 можно сконфигурировать на сигналы тока / напряжения в области 0/4...20 mA и 0...10 VDC. Производя выбор вычислительных функций, необходимо одновременно определить до 4 постоянных К1, К2, К3 и К4. Выбор функций производится индивидуально для каждого из выходов. Дублирование сигнала, напр., входа 1 осуществляется выбором функции **Вход** 1 как для выхода 1. так и для выхода 2.

Выбор функций выходов (посредством конфигурационного ПО PReset):

Вход 1:

Вход 1 - прямая посылка на выбранный выход.

Вход 2:

Вход 2 - прямая посылка на выбранный выход.

Суммирование: (Вход 1 * K1 + Вход 2 * K2 + K4)

Результат суммирования поступает по завершении вычисления на выбранный выход.

Пример 1:

При суммировании 2-х одинаково масштабированных входных сигналов на, напр.,. 4...20 mA, на выходе должно получаться 8...40 mA при том же масштабировании, но, поскольку выход следует стандартному токовому сигналу 0/4...20 mA, то масштабирование на выходе будет удвоенным масштабированием входа. Поэтому каждому входу надо придать половину масштаба выхода. Это осуществляется приданием константам К1 и К2 значения 0,5. Постоянная коррекции К4 обычно равна 0.

Пример 2:

При суммировании 2-х различно масштабированных входных сигналов вычисление K1 и K2 можно произвести следующим образом:

Вход 1: 4...20 mA, что соответствует расходу 0...100 м3 / ч.

Вход 2: 4...20 mA что соответствует расходу 0...150 м3 / ч.

Выходной сигнал на 4...20 mA должен соответствовать расходу 0...250 м3 / ч.

Входу 1 следует придать вес 100/250, что даст K1 = 0.4.

Входу 2 следует придать вес 150/250, что даст K2 = 0.6.

Постоянная коррекции К4 обычно равна 0.

Вычитание: (Вход 1 * K1 - Вход 2 * K2 + K4)

Результат вычитания поступает по завершении вычисления на выбранный выход.

Вход 1 должен иметь самое высокое значение сигнала, или постоянная коррекции К4 должна иметь значение, которое не допускает отрицательного значения на выходе.

Пример:

Пр вычитании 2-х одинаково масштабированных входных сигналов константы K1 и K2=1, и постоянная коррекции K4=0.

Если К1, К2 и К4 = 0,5, выходной сигнал составит 50% при условии равновеликих сигналов на входах. Если на вход 1 поступает 100% сигнала, а на вход 2

- 0%, выходное значение = 100%. Если на вход 2 поступает 100% сигнала, а на выход 1 - 0%, выходное значение составит 0%.

Вычитание: (Вход 2 * K2 - Вход 1 * K1 + K4)

Сигнал на входе 2 должен иметь большее значение. См. подробнее в параграфе "Вычитание: (Вход 1 * K1 - Bxoд 2 * K2 + K4)".

Умножение: ((Вход 1 + K1) * (Вход 2 + K2) * K3 + K4)

Результат умножения поступает по завершении вычисления на выбранный выход.

Постоянная коррекции К1 и К2 используется для увеличения значения на входах. Константу К3 умножают на результат, и к результату прибавляют К4.

Пример:

При помощи потенциометра приложением опорного напряжения 2,5 V к входу 1 нужно, чтобы сигнал на входе 2 можно было изменять в пределах x 0,75...1,25.

Конфигурирование входа 1:

При 0-установке потенциометра результат (Вход 1 + K1) * K3 даст 0,75, а при наивысшем показании потенциометра результат (Вход 1 + K1) * K3 должен дать 1,25. Решив 2 нижеприводимые уравнения с 2 неизвестными, находим K1 и K3:

Уравнение 1: (0 + K1) * K3 = 0,75

Уравнение 2: (1 + K1) * K3 = 1,25

Решение: К1 = 1,5 и К3 = 0,5

Конфигурирование входа 2:

Поскольку сигналу на входе 2 придается его реальный вес, К2 будет = 0.

Конфигурирование К4:

В примере нет корректировки на выходе, поэтому К4 выбирают как 0.

Деление
$$\left(\frac{\text{Вход 1 + K1}}{\text{Вход 2 + K2}} * \text{K3 + K4}\right)$$

Результат деления поступает по завершении вычисления на выбранный выход. Постоянные K1, K2, K3 og K4 конфигурируют, как описано в параграфе об умножении.

Деление:
$$\left(\frac{\text{Вход 2} + \text{K2}}{\text{Вход 1} + \text{K1}} * \text{K3} + \text{K4}\right)$$

Результат деления поступает по завершении вычисления на выбранный выход. Постоянные K1, K2, K3 og K4 конфигурируют, как описано в параграфе об умножении.

Измерение с резервным каналом/дублирование: (Основной вход 1 —> Резервный вход 2 * K2 + K4)

Дублирующая функция направляет первичный сигнал с входа 1 на выбранный выход. При сбое датчика на входе 1 производится автоматическое переключение на резервный входной сигнал с входа 2.

Если сигналы на входах 1 и 2 масштабированы одинаково, то K2=1, а K4=0. Функцию обнаружения сбоя датчика можно выбирать по желанию, но когда эту функцию отключают, выбор выхода не будет определен при сбое датчиков на обоих входах.

Наибольшей надежности можно достичь, используя выход 2 для обнаружения сбоя датчика. Это осуществляется, например, заданием для выхода 2 значение [Udgang/Bыход] как I [Fast/Постоянный] и заданием [Følerfejlsdetektering/ Обнаружение сбоя датчика] и [Detekter/Отслеживать] по желанию.

Измерение с резервным каналом/дублирование: (Основной вход 2 —> Резервный вход 1 * K1 + K4)

Подробнее см. выше в параграфе об измерении с рез. каналом/дублировании.

Функция зеленого светодиода:

Светодиод на передней панели может индицировать следующее:
При нормальной работе, т.е. нуль сбоев:
При функциональном сбое:
При сбое сенсора на входе 1:
Мигание 1 раз/сек.
При сбое сенсора на входе 2:
Мигание 2 раза / сек.
При сбое сенсора на обоих входах:
Постоянное свечение.

Индикаторы Программируемые дисплеи с большим выбором вводов и выводов для индикации температуры, объема, веса и т. д. Обеспечивают линеаризацию и масштабирование сигналов, имеют ряд измерительных функций, программируемых при помощи ПО PReset.

Ех-барьеры Интерфейсы для аналоговых и цифровых сигналов и сигналов НАRT® между датчиками / преобразователями I/P / сигналами частоты и СУ в опасных зонах Ex 0, 1 и 2, ряд модулей - в опасных зонах 20, 21 и 22.

Развязка Устройства гальванической развязки аналоговых и цифровых сигналов, а также сигналов в протоколе HART*. Обширная программа модулей с питанием от токовой петли или универсальным, для линеаризации, инвертирования и масштабирования выходных сигналов.

Температура Широкий выбор температурных преобразователей для монтажа в корпусе датчика стандарта DIN типа В и для установки на DIN-рейке, с обменом аналоговых и цифровых данных по шине. Предлагаются как под конкретные применения, так и универсальные.

Универсальность Программируемые с ПК или с панели мо-дули с универсальным рядом вводов, выводов и питания. Модули этого ряда имеют функции высокого порядка, напр. калибровка процесса, линеаризация и

Филиалы

Zac du Chêne, Activillage 4. allée des Sorbiers. F-69673 Bron Cedex

tel. +33 (0) 4 72 14 06 07 fax +33 (0) 4 72 37 88 20

D-46149 Oberhausen

tel. +49 (0) 208 62 53 09-0 fax +49 (0) 208 62 53 09 99

Italy - Италия

Spain - Испания Avda, Meridiana 354, 9º B

tel. +34 93 311 01 67 fax +34 93 311 08 17

PR electronics AB S-421 32 Västra Frölunda

sales@prelectronics.se tel. +46 (0) 3149 9990 fax +46 (0) 3149 1590

UK - Великобритания Middle Barn, Apuldram

tel. +44 (0) 1243 776 450 fax +44 (0) 1243 774 065

USA - США 11225 West Bernardo Court Suite A

fax +1 858 521 0945

Головной офис

Denmark - Дания PR electronics A/S Lerbakken 10 DK-8410 Rønde

www.prelectronics.com sales@prelectronics.dk тел. +45 86 37 26 77 факс +45 86 37 30 85

